Bachelorstudiengang
Informatik

Modulhandbuch

FH Dortmund
FB Informatik
15.03.2006
Inhaltsverzeichnis

Studienstruktur ...4
01 Einführung in die Informatik ...5
 01 1 Einführung in die Informatik 1 ...6
 01 2 Einführung in die Informatik 2 ...7
02 Programmierkurs..8
 02 1 Programmierkurs 1 ...9
 02 2 Programmierkurs 2 PI ...10
 02 2 Programmierkurs 2 TI..11
03 Rechnerstrukturen und Betriebssysteme ...12
 03 1 Rechnerstrukturen und Betriebssysteme 1 ...14
 03 2 Rechnerstrukturen und Betriebssysteme 2 ...16
04 Theoretische Informatik ...17
 04 0 Theoretische Informatik ...17
05 Systemgrundlagen ...19
 05 1 Datenbanken 1 ..21
 05 2 Softwaretechnik 1 ..23
06 Mathematik 1...25
 06 1 Analysis 1 ..26
 06 2 Lineare Algebra 1 ...28
07 Mathematik 2...29
 07 1 Analysis 2 ..30
 07 2 Lineare Algebra 2 ...31
 07 3 Statistik ...33
08 Medieninformatik ..35
 08 1 Mensch-Computer-Interakt. ..36
 08 2 Multimedia ...38
09 Künstliche Intelligenz ...40
 09 0 Künstliche Intelligenz ...40
10 Außerfachliches Grundlagenmodul ..42
 10 1 BWL ..43
 10 2 Lern- und Arbeitstechniken ..44
 10 3 Technisches Englisch ...45
11 Netzbasierte Systeme und Anwendungen ...46
 11 1 Kommunikations- und Rechnernetze ..47
 11 2 Datenschutz/Datensicherheit ..49
 11 4 Embedded Systems ..51
12 Softwaresysteme 1...53
 12 1 Softwaretechnik 2 ..55
 12 2 Web Engineering 1 ..57
13 Softwaresysteme 2...59
 13 1 Datenbanken 2 ...60
 13 2 Standardsoftware (BWL-Anwendungen) ..62
18 Seminar ...63
 18 1 Seminar 1 ..64
 18 2 Präsentationstechniken ..65
<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Projektarbeit</td>
<td>66</td>
</tr>
<tr>
<td>19 1</td>
<td>Projektarbeit 1</td>
<td>67</td>
</tr>
<tr>
<td>19 2</td>
<td>Projektarbeit 2</td>
<td>69</td>
</tr>
<tr>
<td>20</td>
<td>Außerfachliches Modul</td>
<td>71</td>
</tr>
<tr>
<td>20 1</td>
<td>Informatik und Gesellschaft</td>
<td>72</td>
</tr>
<tr>
<td>20 2</td>
<td>DV-Recht</td>
<td>73</td>
</tr>
<tr>
<td>21</td>
<td>Phys.-elektrotechn. Grdl.</td>
<td>74</td>
</tr>
<tr>
<td>21 1</td>
<td>Phys.-elektrotechn. Grdl. 1</td>
<td>75</td>
</tr>
<tr>
<td>21 2</td>
<td>Phys.-elektrotechn. Grdl. 2</td>
<td>77</td>
</tr>
<tr>
<td>22</td>
<td>Hardware Engineering</td>
<td>78</td>
</tr>
<tr>
<td>22 0</td>
<td>Hardware Engineering</td>
<td>78</td>
</tr>
<tr>
<td>23</td>
<td>Technische Systeme</td>
<td>80</td>
</tr>
<tr>
<td>23 1</td>
<td>Automatisierungstechnik</td>
<td>81</td>
</tr>
<tr>
<td>23 2</td>
<td>Systems Engineering 1</td>
<td>83</td>
</tr>
<tr>
<td>65</td>
<td>Bachelorarbeit (Thesis) und Kolloquium</td>
<td>85</td>
</tr>
</tbody>
</table>

Katalog der Lehrveranstaltungen für die Wahlpflichtmodule

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>808</td>
<td>Componentware</td>
<td>87</td>
</tr>
<tr>
<td>809</td>
<td>Computergraphik</td>
<td>88</td>
</tr>
<tr>
<td>812</td>
<td>Datenbanken 2</td>
<td>89</td>
</tr>
<tr>
<td>813</td>
<td>Datenschutz und Datensicherheit</td>
<td>91</td>
</tr>
<tr>
<td>814</td>
<td>Digitale Bildverarbeitung</td>
<td>92</td>
</tr>
<tr>
<td>815</td>
<td>Digitale Signalverarbeitung</td>
<td>93</td>
</tr>
<tr>
<td>828</td>
<td>Standardsoftware (ERP-Systeme)</td>
<td>95</td>
</tr>
<tr>
<td>834</td>
<td>Künstliche Intelligenz</td>
<td>97</td>
</tr>
<tr>
<td>838</td>
<td>Maschinenorientierte Programmierung</td>
<td>99</td>
</tr>
<tr>
<td>840</td>
<td>Numerische Algorithmen</td>
<td>100</td>
</tr>
<tr>
<td>841</td>
<td>Operations Research</td>
<td>102</td>
</tr>
<tr>
<td>845</td>
<td>Rechnerarchitekturen</td>
<td>103</td>
</tr>
<tr>
<td>846</td>
<td>Simulationstechnik</td>
<td>105</td>
</tr>
<tr>
<td>849</td>
<td>Systemprogrammierung</td>
<td>106</td>
</tr>
<tr>
<td>855</td>
<td>Robotik</td>
<td>107</td>
</tr>
<tr>
<td>856</td>
<td>XML</td>
<td>108</td>
</tr>
</tbody>
</table>
Studienstruktur

Die Studiengänge sind mehrstufig modular aufgebaut.

Einem Modul sind in der Regel 10 Leistungspunkte und 8 SWS Lehrpräsenz zugeordnet.

Geprüft werden Module in Modulprüfungen, ist ein Modul in mehrere Lehrveranstaltungen aufgeteilt, so werden diese mit Modulteilprüfungen abgeprüft.
Eine Modulprüfung ist bestanden, wenn mit den Modulteilprüfungen die für das Modul erforderliche Zahl von Leistungspunkten erreicht wird.

Die Module des Fachbereichs werden mit einer zweistelligen Nummer dargestellt.

05 Modul Systemgrundlagen
05 0 kennzeichnet das Modul bzw. die Modulprüfung
05 1 Lehrveranstaltung Softwaretechnik 1, bzw. die Modulteilprüfung
05 2 Lehrveranstaltung Datenbanken 1, bzw. die Modulteilprüfung

Vor die Modulkennung können noch weitere Merkmale gesetzt werden, wie z. B. eine Level- oder die Semesterangabe, die Studiengangskennung und / oder eine Fachbereichskennung.

Aufbau der Studiengänge:
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Einführung in die Informatik</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 10
Art und Umfang: gesamt 9 SWS; Vorlesung 5 SWS, Übung 2 SWS, Praktikum 2 SWS; Anwesenheit 135h, Eigenarbeit 165h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: siehe Lehrveranstaltungen 01 1 und 01 2

Lernziel:
Kennen:
– Systematischer Überblick über Prinzipien, Methoden, Konzepte und Notationen des Programmieren im Kleinen und seine Einordnung in verschiedene Kontexte
– Bekannte Algorithmen und Datenstrukturen und deren Eigenschaften kennen

Anwenden:
– Fähigkeit Algorithmen zu entwickeln, überprüfen, analysieren und adäquat in UML und Java zu beschreiben, zu übersetzen und auszuführen
– Algorithmen entwerfen und analysieren können
– Algorithmen und Datenstrukturen in Java implementieren können
– Bekannte Algorithmen und Datenstrukturen zur Lösung von Problemen einsetzen können

Lehrinhalt:
Siehe 01 1 und 01 2

Literatur:
Siehe 01 1 und 01 2

Hochschullehrer/in:
Meyer, Stark, Ecke-Schüth
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Einführung in die Informatik</td>
</tr>
</tbody>
</table>

Modul/LV-Nr. 01 1: Einführung in die Informatik 1

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 01
Leistungspunkte: 5
Art und Umfang: gesamt 5 SWS; Vorlesung 3 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 75h, Eigenarbeit 75h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:

Kennen:
Systematischer Überblick über Prinzipien, Methoden, Konzepte und Notationen des Programmieren im Kleinen und seine Einordnung in verschiedene Kontexte

Anwenden:
Fähigkeit Algorithmen zu entwickeln, überprüfen, analysieren und adäquat in UML und Java zu beschreiben, zu übersetzen und auszuführen

Lehrinhalt:

- Grundlegende Begriffe der Informatik
- Vorgehensweisen für die schrittweise Entwicklung von Programmen
- Elemente der objektorientierten Programmierung: Objekte, Klassen, Vererbung, Polymorphismus
- Beschreibungsmethoden der objektorientierten Programmierung, z.B. UML
- Elemente der imperativen Programmierung: Datentypen, Kontrollstrukturen, Operationen
- Beschreibungsmethoden der imperativen Programmierung, z.B. Struktogramme

Literatur:

H. Balzert, Lehrbuch Grundlagen der Informatik, 1999

Hochschullehrer/in:

Meyer, Stark, Zeppenfeld
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Einführung in die Informatik</td>
</tr>
<tr>
<td>01 2</td>
<td>Einführung in die Informatik 2</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: Einführung in die Informatik 1
Verwendbarkeit: im Modul 01
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
– Bekannte Algorithmen und Datenstrukturen und deren Eigenschaften kennen
Anwenden:
– Algorithmen entwerfen und analysieren können
– Algorithmen und Datenstrukturen in Java implementieren können
– Bekannte Algorithmen und Datenstrukturen zur Lösung von Problemen einsetzen können

Lehrinhalt:
– Entwurf, Analyse und Laufzeitverhalten von Algorithmen
– Such- und Sortierverfahren
– Listen, Bäume, Graphen, Hash-Tabellen
– Bezug zu modernen Klassenbibliotheken wie z.B. Java-Collections

Literatur:
H. Balzert, Lehrbuch Grundlagen der Informatik, 1999

Hochschullehrer/in:
Ecke-Schüth, Meyer, Stark
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Programmierkurs</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 4 SWS, Praktikum 4 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen: keine
Prüfungsleistung: siehe Lehrveranstaltungen 02 1 und 02 2

Lernziel:
siehe Lehrveranstaltungen 02 1 und 02 2

Lehrinhalt:
siehe Lehrveranstaltungen 02 1 und 02 2

Literatur:
siehe Lehrveranstaltungen 02 1 und 02 2

Hochschullehrer/in:
Böckmann, Patzelt, Sachweh
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Programmierkurs</td>
</tr>
<tr>
<td>02 1</td>
<td>Programmierkurs 1</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 02
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Praktikum 2 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
- Professionelle Entwicklung effizienter Programme
- Problemgerechte Anwendung der Konzepte der objekt-orientierten Programmierung

Lehrinhalten:
- Vertiefung der objektorientierten Programmierung in Java
- Programmentwicklungsprozess, Testen von Programmen
- Dialoggestaltung, Programmierung graphischer Benutzungsoberflächen
- Ein-/Ausgabe, Persistenz
- Techniken zur Programmierung kaufmännischer, technischer und multimedialer Anwendungen

Literatur:
- H. Balzert, Lehrbuch Grundlagen der Informatik, 1999
- J. Goll, C. Weiβ, F. Müller, Java als erste Programmiersprache
- G. Krüger, Handbuch der Java-Programmierung

Hochschullehrer/in:
Böckmann, Sachweh
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Programmierkurs</td>
</tr>
<tr>
<td>02 2</td>
<td>Programmierkurs 2 PI</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 02, Vertiefung Praktische Informatik
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Praktikum 2 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
- Selbstständige Erstellung, Analyse und Korrektur lauffähiger C- und C++ Programme
- Problemgerechter Einsatz imperativer und objektorientierter Konzepte von C und C

Lehrinhalt:
- Vergleich imperativer und objekt-orientierter Programmierkonzepte
- Einführung in die Programmiersprachen C und C++
- Abgrenzung zwischen Java und C++
- Einführung in die Standard Template Library

Literatur:
P. Prinz, U. Kirch-Prinz, C++ lernen und professionell anwenden, 2002
U. Breymann, C++, 2003

Hochschullehrer/in:
Sachweh
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Programmierkurs</td>
</tr>
<tr>
<td>02 2</td>
<td>Programmierkurs 2 TI</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 02, Vertiefung Technische Informatik
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Praktikum 2 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Selbstständige Erstellung, Analyse und Korrektur maschinennaher Programme
Problemgerechter Einsatz maschinennaher Programmierkonzepte

Lehrinhalt:
- Abbildung von Datenstrukturen höherer Programmiersprachen auf Maschinenebene
- Einführung in die maschinennahe Programmierung z.B. Befehlssätze, Adressierungsarten

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
Patzelt
Modul/LV-Nr.	Modul/Lehrveranstaltung
03 | Rechnerstrukturen und Betriebssysteme

<table>
<thead>
<tr>
<th>Modulart: Pflichtmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotshäufigkeit: jährlich</td>
</tr>
<tr>
<td>Voraussetzungen: keine</td>
</tr>
<tr>
<td>Verwendbarkeit: Informatik, Bachelor</td>
</tr>
<tr>
<td>Leistungspunkte: 10</td>
</tr>
<tr>
<td>Art und Umfang: gesamt 8 SWS; Vorlesung 4 SWS, Übung 2 SWS, Praktikum 2 SWS; Anwesenheit 120h, Eigenarbeit 180h</td>
</tr>
<tr>
<td>Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben</td>
</tr>
<tr>
<td>Prüfungsmöglichkeit: siehe Lehrveranstaltungen 03 1 und 03 2</td>
</tr>
</tbody>
</table>

Lernziel:
Kennen:
- Kenntnisse der Struktur von Prozessoren und Computersystemen, sowie der grundlegenden Komponenten von Betriebssystemen und deren Zusammenwirken.

Anwenden:
- Für virtuelle und reale Prozessoren einfache Maschinenprogramme mit Systemcalls analysieren und schreiben.
- Ein Betriebssystem installieren und konfigurieren
- Kommandos und Standardtools einsetzen
- Skripte für wiederkehrende Aufgaben schreiben
- Datei-E/A, Prozesse und Threads sowie Netzwerkkommunikation in C und Java programmieren
- Synchronisationsprobleme mit Semaphor und Monitor lösen
- Grammatik formulieren und in Programm umsetzen.
Lehrinhalt:
- Rechnerstrukturen (Architekturen, Systemorganisation
- Prozessorarchitekturen
- Virtuelle Maschinen, ISA-Level, Assembler, Java-VM
- Technische Grundlagen von Betriebssystemen (Strukturen, Kernel, Virtueller Speicher, Ein-/Ausgabe, Netzwerk, Treiber, Dateien, praktische Einführung in die Betriebssysteme Windows und Linux)

Literatur:
- W. Stallings: Betriebssysteme, Prinzipien und Umsetzung, Pearson Studium / Prentice Hall
- A.S. Tanenbaum: Moderne Betriebssysteme, Pearson Studium / Prentice Hall

Hochschullehrer/in:
Swik, Röhrig
Modul/LV-Nr.	Modul/Lehrveranstaltung
03 | Rechnerstrukturen und Betriebssysteme
03 1 | Rechnerstrukturen und Betriebssysteme 1

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 03
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen: Kenntnisse der Struktur von Prozessoren und Computersystemen, sowie der grundlegenden Komponenten von Betriebssystemen und deren Zusammenwirken.

Anwenden:
- Für virtuelle und reale Prozessoren einfache Maschinenprogramme mit Systemcalls analysieren und schreiben
- Ein Betriebssystem installieren und konfigurieren
- Kommandos und Standardtools einsetzen
- Skripte für wiederkehrende Aufgaben schreiben

Lehrinhalt:
- Rechnerstrukturen (Architekturen, Systemorganisation, Prozessorarchitekturen, Virtuelle Maschinen, ISA- Level, Assembler, Java-VM)
- Technische Grundlagen von Betriebssystemen (Strukturen, Kernel, Virtueller Speicher, Ein-/Ausgabe, Netzwerk, Treiber, Dateien; Praktische Einführung in die Betriebssysteme Windows und Linux)
- Weitere Grundlagen von Betriebssystemen (Dateisystem, Prozesse und Prozessverwaltung, Threads, Koordination, Synchronisation und Prozesskommunikation)
- Grundlagen der Netzwerkprogrammierung (Client/Server-Systeme)
- Grundlagen von Compilern und Interpretern
Literatur:
- W. Stallings: Betriebssysteme, Prinzipien und Umsetzung, Pearson Studium / Prentice Hall
- A.S. Tanenbaum: Moderne Betriebssysteme, Pearson Studium / Prentice Hall

Hochschullehrer/in:
Swik, Röhrig
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>Rechnerstrukturen und Betriebssysteme</td>
</tr>
<tr>
<td>03 2</td>
<td>Rechnerstrukturen und Betriebssysteme 2</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 03
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
- Kenntnisse der grundlegenden Komponenten von Betriebssystemen und Netzwerken.
- Kenntnisse formaler Sprachen und der Funktionsweise von Interpretern sowie Compilern.
Anwenden:
- Datei-E/A, Prozesse und Threads sowie Netzwerkkommunikation in C und Java programmieren
- Synchronisationsprobleme mit Semaphor und Monitor lösen
- Grammatik formulieren und in Programm umsetzen.

Lehrinhalt:
Fortsetzung Grundlagen von Betriebssystemen
- Dateisystem, Prozesse und Prozessverwaltung, Threads, Koordination,
Synchronisation und Prozesskommunikation
- Grundlagen der Netzwerkprogrammierung (Client/Server-Systeme)
- Grundlagen von Compilern und Interpretern

Literatur:
- W. Stallings: Betriebssysteme, Prinzipien und Umsetzung, Pearson Studium / Prentice Hall
- A.S. Tanenbaum: Moderne Betriebssysteme, Pearson Studium / Prentice Hall

Hochschullehrer/in:
Swik, Röhrig
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>Theoretische Informatik</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul / Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Erwerb der Grundkenntnisse des Aussagen- und Prädikatenkalküls (1. Stufe) als Basis für: Schaltalgebra, Logisches Programmieren, wissensbasierte Systeme oder ganz allgemein für alle deduktiven System.

Lehrinhalt:
- Einführung in die Aussagenlogik:
 - Logische Funktionen, Formeln und einige Regeln
 - Natürliches Schließen
 - Normalformen
 - Maschinelles Schließen
- Einführung in die Prädikatenlogik
 - prädikatenlogische Formeln, Formeln und Regeln
 - Interpretation, Erfüllbarkeit, Modelle
 - Syllogismen
 - Maschinelles Schließen in er PL
- Einige technische Anwendungen
 - Sequentielle Logik
 - Turing Maschine als (logischer) Automat
 - Grammatiken (Chomsky-Hierarchie)
 - Backus-Naur-Notation, Syntaxgraph, regulärer Ausdruck.
 - Ableitung und Rekursion.
 - Finiter Automat.
 - Stack-Automat.
- Erzeugung von „Lexer“ und „Parser“ mit den UNIX-Werkzeugen „LEX“ und „YACC“.
Literatur:
Schriftliches Begleitmaterial wird verteilt

G. Matthiessen, Logik für Software-Ingenieure
H.J. Kreowska, Logische Grundlagen der Informatik

Hedtstück, U.:
„Einführung in die theoretische Informatik"
R. Oldenbourg Verlag München Wien 2000

Schöning:
"Theoretische Informatik – kurzgefasst"
Spektrum Akademischer Verlag 1997

"lex & yacc"
Verschiedene Skripte

Hochschullehrer/in:
von Goldammer, Patzelt
Modul/LV-Nr. Modul/Lehrveranstaltung

<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>Systemgrundlagen</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 5 SWS, Übung 1 SWS, Praktikum 2 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen: siehe Lehrveranstaltungen 05 1 und 05 2
Prüfungsleistung: siehe Lehrveranstaltungen 05 1 und 05 2

Lernziel:
- Konzepte der Objektorientierung kennen und mit der UML (Unified Modeling Language) umsetzen können.
- Grundkonzepte der Datenbanktechnik und der relationalen Datenbanksysteme anwenden können.

Kennen:
- Phasen, Konzepte und aktuellste UML-Notation kennen
- Einführung in den Einsatz von Datenbanksystemen. Systematischer Überblick über Prinzipien, Konzepte, Methoden und Notationen der Datenbanksysteme und der Datenbanksprache SQL.

Anwenden:
- OOA- und OOD-Modelle ingenieurmäßig erstellen können.
- UML-Modelle bezüglich ihrer Qualität beurteilen können.
- Problemstellungen im Team systematisch analysieren und modellieren können.
- Kommunikation mit Datenbanksystemen mittels der Sprache SQL.
- Einsatz von Standard-Verwaltungssoftware (Enterprise Manager, Query Analyser) für Datenbanksysteme (Oracle 9i).
Lehrinhalt:
- Objektorientierte Softwareentwicklung
- Konzepte und Notationselemente der objektorientierten Analyse
- Methodische Erstellung von OOA-Modellen
- Systematische Qualitätsprüfung vom OOA-Modellen
- Konzepte und Notationselemente des objektorientierten Entwurfs
- Entwurfsmuster
- Objektrelationale Abbildung
- Architekturentwurf und Entwurfsheuristiken
- Drei-Schichten-Architekturen erstellen
- Einführung in Datenmodelle.
- Spezielle Eigenschaften des relationalen Modells: Strukturen und Operatoren.
- Der Sprachstandard SQL: Datentypen, Strukturdefinitionen, Strukturelle Integritäten, Datenbankupdates (insert, update, delete), Aufbau der Select-Anweisung, Einfache Select-Anweisung, Funktionen, Datengruppierung, Gruppenfunktionen, Subselect’s, Verbundoperationen, Views.

Literatur:
- Heide Balzert, Lehrbuch der Objektmodellierung, 2. Auflage, 2005
- Elmasri: Grundlagen von Datenbanksystemen (Addison Wesley), Abbey: Oracle 9i für Einsteiger (Hanser); Matthiessen: Relationale Datenbanken und SQL (Addison Wesley);

Hochschullehrer/in:
Balzert, Zeppenfeld, Krägeloh
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>Systemgrundlagen</td>
</tr>
<tr>
<td>05 1</td>
<td>Datenbanken 1</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 05
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 3 SWS, Praktikum 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Grundkonzepte Datenbanktechnik und der relationalen Datenbanksysteme anwenden können.

Kennen:
- Einführung in den Einsatz von Datenbanksystemen.
- Systematischer Überblick über Prinzipien, Konzepte, Methoden und Notationen der Datenbanksysteme und der Datenbanksprache SQL.

Anwenden:
- Kommunikation mit Datenbanksystemen mittels der Sprache SQL.
- Einsatz von Standard-Verwaltungssoftware (Enterprise Manager, Query Analyser) für Datenbanksysteme (Oracle 9i).
<table>
<thead>
<tr>
<th>Lehrinhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Einführung in Datenmodelle.</td>
</tr>
<tr>
<td>- Spezielle Eigenschaften des relationalen Modells: Strukturen und Operatoren.</td>
</tr>
<tr>
<td>- Der Sprachstandard SQL: Datentypen, Strukturdefinitionen, Strukturelle Integritäten, Datenbankupdates (insert, update,delete), Aufbau der Select-Anweisung, Einfache Select-Anweisung, Funktionen, Datengruppierung, Gruppenfunktionen, Subselect’s, Verbundoperationen, Views.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Elmasri: Grundlagen von Datenbanksystemen (Addison Wesley)</td>
</tr>
<tr>
<td>- Abbey: Oracle 9i für Einsteiger (Hanser)</td>
</tr>
<tr>
<td>- Matthiessen: Relationale Datenbanken und SQL (Addison Wesley)</td>
</tr>
<tr>
<td>Jeweils die aktuellste Auflage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschullehrer/in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krägeloh</td>
</tr>
</tbody>
</table>
Modul/LV-Nr. | Modul/Lehrveranstaltung
---|---
05 | Systemgrundlagen
05 2 | Softwaretechnik 1

Modulart: Lehrveranstaltung

Angebotshäufigkeit: jährlich

Voraussetzungen: keine

Verwendbarkeit: im Modul 05

Leistungspunkte: 5

Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit 60h, Eigenarbeit 90h

Prüfungsvorleistungen: Erfolgreiche Durchführung eines Softwareprojekts und/oder Bearbeitung und Präsentation von Aufgaben und/oder Bestehen eines automatisierten Tests

Prüfungsleistung: Klausur

Lernziel:

Kennen:
- Phasen der objektorientierte Softwareentwicklung kennen.
- Konzepte der Objektmmodellierung kennen.
- UML2-Notation zur Darstellung dieser Konzepte kennen.

Anwenden:
- OOA- und OOD-Modelle mit den diversen Diagrammen der UML 2 erstellen können.
- Vorhandene UML-Modelle bezüglich ihrer Qualität beurteilen können.
- Problemstellungen mittlerer Komplexität im Team systematisch analysieren und mit den Diagrammen der UML modellieren können.
Lehrinhalt:
- Objektorientierte Softwareentwicklung
- Konzepte und Notationselemente der objektorientierten Analyse
 - Klassendiagramm, Paketdiagramm
 - Use-Case-Diagramm, Aktivitätsdiagramm, Interaktionsdiagramme, Zustandsdiagramme
- Methodische Erstellung von OOA-Modellen
- Systematische Qualitätsprüfung vom OOA-Modellen
- Konzepte und Notationselemente des objektorientierten Entwurfs
 - Parametrisierte Klasse, Interface, Komponentendiagramme,
 - Komplexe Aktivitäts-, Interaktions- und Zustandsdiagramme
- Entwurfsmuster
 - Fabrikmethode, Singleton, Kompositum, Proxy, Fassade, Beobachter, Schablonenmethode
- Objektrelationale Abbildung
- Architekturentwurf und Entwurfsheuristiken
- Drei-Schichten-Architekturen erstellen

Literatur:
Heide Balzert, Lehrbuch der Objektmodellierung, 2. Auflage, 2005

Hochschullehrer/in:
Balzert, Zeppenfeld
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>Mathematik 1</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotsfrequenz: jährlich
Voraussetzungen: Bruchrechnen und Termumformungen sollten keine Schwierigkeiten mehr bereiten
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 4 SWS, Übung 4 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Erlernen des Umgangs mit und des Einsatzes von grundlegenden mathematischen Konzepten im Umfeld der Informatik

Lehrinhalt:
siehe Veranstaltungsbeschreibungen 06 1 und 06 2

Literatur:
siehe Veranstaltungsbeschreibungen 06 1 und 06 2

Hochschullehrer/in:
Lenze, Hennekemper, Cleven
Modul/LV-Nr. Modul/Lehrveranstaltung
06 Mathematik 1
06 1 Analysis 1

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: Bruchrechnen und Termumformungen sollten keine Schwierigkeiten mehr bereiten
Verwendbarkeit: im Modul 06
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 2 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Die Studierenden sollten
- den Funktionsbegriff kennen und anwenden können
- das Prinzip der vollständigen Induktion kennen
- nicht allzu komplexe Folgen auf ihre Konvergenz hin untersuchen können,
- deren Grenzwerte ggf. ermitteln können,
- die Konvergenz eines Algorithmus beurteilen können (Anwendung i. d. Informatik)
- Funktionen differenzieren und integrieren können
- die Begriffe (reelle) Fourier- und Taylorreihe kennen und anwenden können

Lehrinhalt:
- Zahlbereiche
- vollständige Induktion
- Polynome, Cosinus, Sinus, Exponentialfunktion und andere elementare Funktionen
- Folgen und Reihen
- Konvergenz- und Grenzwertbegriff
- Stetigkeit von Funktionen
- Differenzierbarkeit von Funktionen, -
 ein- und mehrdimensionales Differenzialkalkül,
- Approximation von Funktionen durch Polynome
- lokale und globale Extrema
- Regel von de l`Hospital
- Grundlagen der Integration von stetigen Funktionen
- Fourierreihen
Literatur:
- H. Heuser; Analysis I und Analysis II
- P. Furlan; Das gelbe Rechenbuch 1 - 3

Eigentlich muss keine Literatur beschafft werden, da ein Skript aus dem Internet downloadbar ist.

Hochschullehrer:
Cleven, Lenze
Modul/LV-Nr. Modul/Lehrveranstaltung

<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>Mathematik 1</td>
</tr>
<tr>
<td>06 2</td>
<td>Lineare Algebra 1</td>
</tr>
</tbody>
</table>

Modulart:
Lehrveranstaltung

Angebotshäufigkeit:
jährlich

Voraussetzungen:
Sichere Kenntnisse der Schulmathematik

Verwendbarkeit:
im Modul 06

Leistungspunkte:
5

Art und Umfang:
gesamt 4 SWS;
Vorlesung 2 SWS, Übung 2 SWS;
Anwesenheit 60h, Eigenarbeit 90h

Prüfungsvorleistungen:
Regelmäßige Bearbeitung von Aufgaben

Prüfungsleistung:
Klausur

Lernziel:
Die Studierenden sollten die grundlegenden Konzepte der linearen Algebra zur Beschreibung und Lösung elementarer linearer Probleme im Kontext der Informatik beherrschen

Lehrinhalt:
- Skalare, Vektoren, Operationen mit Vektoren,
- lineare Abhängigkeit und Unabhängigkeit,
- Basis, Vektorraum, Dimension,
- Matrizen, Operationen mit Matrizen,
- Rang von Matrizen,
- Determinanten,
- inverse Matrizen,
- lineare Gleichungssysteme,
- Gauß-Algorithmus

Literatur:
- Skript zur Vorlesung,

Hochschullehrer/in:
Hennekemper, Lenze
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>Mathematik 2</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 4 SWS, Übung 4 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: siehe Veranstaltungsbeschreibungen 07 1, 07 2 und 07 3

Lernziel:
Erlernen des Umgangs mit und des Einsatzes von grundlegenden mathematischen Konzepten im Umfeld der Informatik
Zwei Bereiche der Höhere Mathematik sind zu beherrschen. Sie können gewählt werden aus
07 1 Analysis 2
07 2 Lin. Algebra 2
07 3 Statistik

Lehrinhalt:
siehe Veranstaltungsbeschreibungen 07 1, 07 2 und 07 3

Literatur:
siehe Veranstaltungsbeschreibungen 07 1, 07 2 und 07 3

Hochschullehrer/in:
Lenze, Cleven, Rietmann
Modul/LV-Nr.	Modul/Lehrveranstaltung
07 | Mathematik 2
07 1 | Analysis 2

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: Analysis 1
Verwendbarkeit: Allgemeinbildend und sehr hilfreich in Bezug auf jeden Kurs, der Bild- oder Signalverarbeitung oder dynamische Systeme zum Inhalt hat; im Modul 07
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Seminaristische Vorlesung 4 SWS
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Der/die erfolgreiche Teilnehmer/in dieses Kurses sollte die grundlegenden mathematischen Ideen der Bild- oder Signalverarbeitung verstanden haben und einfache Differenzialgleichungen bzw. Differenzialgleichungssysteme lösen können.

Lehrinhalt:
- Ergänzungen zur Integration;
- Fourier-Reihen
- stetige und diskrete Fourier-Transformation
- lineare Differenzialgleichungen und Differenzialgleichungssysteme 1. Ordnung
- Laplace-Transformation

Literatur:
- H. Heuser; Differentialgleichungen
- P. Furlan; Das gelbe Rechenbuch 3

diese Liste wird während des Kurses vervollständigt werden

Eigentlich muss keine Literatur beschafft werden, da ein Skript aus dem Internet downloadbar ist.

Hochschullehrer/in:
Cleven
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>Mathematik 2</td>
</tr>
<tr>
<td>07 2</td>
<td>Lineare Algebra 2</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: Lineare Algebra 1 (062)
Verwendbarkeit: im Modul 07
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 2 SWS
Anwesenheit: 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
- Vermittlung der Grundlagen, Techniken und Algorithmen der Linearen Algebra, soweit sie für das erfolgreiche Studium der Informatik relevant sind.
- Die Studierenden sollen die unten angegebenen Lehrinhalte kennen und fundiert entscheiden können, welche Technik man zur Lösung welchen Problems anwendet, wobei die konkret angesprochenen Fragestellungen aus den Bereichen Computer-Grafik, System-Theorie sowie Daten-Analyse und -Aufbereitung kommen.

Lehrinhalt:
- Geraden
- Ebenen
- Schnittmengen
- komplexe Zahlen
- Polynomfaktorisierungen
- Eigenwerte
- Eigenvektoren
- symmetrische und hermitesche Matrizen
- orthogonale und unitäre Matrizen
- verschiedene Transformationen (kartesische und baryzentrische Koordinatentransformationen, Zentralprojektionen, Parallelprojektionen, Rotationen, Householder-Transformationen, Karhunen-Loeve-Transformationen, diskrete Fourier-, Cosinus- und Wavelet-Transformationen etc.)
Literatur:
Skript zur Vorlesung,

Ferner wird die Vorlesung neben diesem Buch durch einen entsprechenden Online-Kurs auf dem Fachbereichs-eigenen W3L-Server ergänzt!

Hochschullehrer/in:
Lenze
Modul/LV-Nr. Modul/Lehrveranstaltung

07 Mathematik 2

07 3 Statistik

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: Lineare Algebra 1 (062)
Verwendbarkeit: im Modul 07
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 2 SWS
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Die Studierenden

wissen:
welche grundsätzliche Bedeutung statistisch gesicherten Aussagen in Theorie und Praxis beizumessen ist und wie mit Hilfe von Stichproben auf die Verteilungsmerkmale interessierender Gesamtheiten geschlossen werden kann,

kennen:
die grundlegenden Aussagen der elementaren Wahrscheinlichkeitstheorie, die wichtigsten Stichprobenverteilungen der angewandten Statistik sowie die aus diesen resultierenden Methoden zur Parameterschätzung und Prüfung von Hypothesen,

können:
aufgrund der erworbenen Kenntnisse Stichproben auswerten und aus den Ergebnissen statistisch gesicherte Aussagen selbständig herleiten.

Lehrinhalt:
Elementare Wahrscheinlichkeitsrechnung (Zufallsexperiment, Laplace-Experiment, bedingte Wahrscheinlichkeit, Satz von Bayes), diskrete/stetige Zufallszahlen, Ziehungsmodelle und ihre Verteilungen, Stichprobenkennzahlen und Stichprobenverteilungen, Konfidenzintervalle und Parametertests
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wird in der Vorlesung bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschullehrer/in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rietmann</td>
</tr>
<tr>
<td>Modul/LV-Nr.</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>08</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor, Vertiefung Praktische Informatik
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 4 SWS, Übung 4 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: siehe Lehrveranstaltungen 08 1 und 08 2

Lernziel:
Das Modul vermittelt einerseits Grundlagen von Benutzerschnittstellen für das effiziente Zusammenwirken bzw. die Interaktion zwischen Mensch und Computer, andererseits die mathematischen und physikalischen Grundlagen der Signalverarbeitung, danach schwerpunktmäßig die Kodierung von Medientypen wie Audio und Video und der Erarbeitung von Techniken für den Medieneinsatz in Client-Server-Umgebungen, die Kodierung von gängigen MIME-Types, Grundlagen von Hypertext und Hypermedia sowie wichtiger Kommunikationsprotokolle.

Lehrinhalt:
Siehe unter 08 1 und 08 2

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
Eren
Modul/LV-Nr. Modul/Lehrveranstaltung
08 Medieninformatik
08 1 Mensch-Computer-Interakt.

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 08
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 2 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Die Veranstaltung vermittelt Grundlagen von Benutzerschnittstellen für das
effiziente Zusammenwirken bzw. die Interaktion zwischen Mensch und Computer. In
diesem Zusammenhang werden sowohl physiologische als auch psychologische
Aspekte der menschlichen Informationsverarbeitung behandelt. Des Weiteren wird
die Software-Ergonomie als Wissenschaftsgebiet vorgestellt, das sich mit der
Gestaltung von Mensch-Maschine-Systemen befasst. Ferner werden die
Auswirkungen auf Konzepte und Implementierungen von Software-Systemen und
Benutzungsschnittstellen untersucht und diskutiert.
Als komplementäre Inhalte werden Grundlagen aus den Bereichen
Medienverarbeitung sowie Hypertext- und Hypermedia vermittelt, die bei der
multimedialen Interaktion eine wesentliche Rolle spielen.

Lehrinhalt:
- Begriffsbestimmungen und Definitionen
- Grundlagen der Mensch-Computer-Interaktion
- benutzergerechte Software-Entwicklung
- Zusammenwirken von Mensch und Maschine
- Interaktive Systeme
- Geschichtliche Entwicklung
- Software-Ergonomie
- Gestaltung von Mensch-Maschine-Systemen
- Modelle der Benutzungsschnittstelle
- Physiologie der menschlichen Informationsverarbeitung
- Psychologie der visuellen Wahrnehmung
- Gedächtnis und mentale Modelle
- Handlungsprozesse Fehler in Handlungsprozessen
- Die Ein-/Ausgabe-Ebene
- Dialog-Ebene Interaktionsstile
- Benutzerunterstützung
- Fehlerbehandlung
| - Hilfesysteme |
| - Die Organisationsebene |
| - Qualität von Benutzungsschnittstellen |
| - Ergonomische Qualitätssicherung |
| - Implementation von Benutzungsschnittstellen |
| - Entwicklungswerkzeuge für Benutzungsschnittstellen |
| - Style-Guides |
| - Multimediale Interaktionsmechanismen und -Standards. |
| - Abgrenzung Hypermedia und Hypertext |
| - Link-Semantiken |
| - Interaktion und Navigation |
| - Hypertext-Modelle |
| - Benutzerfreundlicher Hypertext |
| - Interaktions- und Navigationsmechanismen in Hypermedia-Systemen und Autorensysteme |

Kennen:

Wissen:
siehe Lehrinhalte

Können:

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
Eren
Modul/LV-Nr. Modul/Lehrveranstaltung
08 Medieninformatik
08 2 Multimedia

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 08
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 2 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Zunächst lernt der Studierende die mathematischen und physikalischen Grundlagen
der Signalverarbeitung kennen. Diese Grundlagen werden danach mit Fokus auf die
Verarbeitung von multimedialen Daten und Multimediaanwendungen erweitert.
Dieses bildet die Basis für ein ganzheitliches Verständnis der Zusammenhänge
sowie Standards und Formate für Medienkodierung, -speicherung und –transport.
Ein wesentlicher Schwerpunkt der Veranstaltung ist die bei der Kodierung von
Medientypen wie Audio und Video und der Erarbeitung von Techniken für den
Medieneinsatz in Client-Server-Umgebungen, die Kodierung von gängigen MIME-
Types, Grundlagen von Hypertext und Hypermedia sowie wichtiger
Kommunikationsprotokolle.
Lehrinhalt:

- Zeitkontinuierliche Signale
- Deterministische- und Zeitkontinuierliche Signale
- Signaltheorie und –verarbeitung
- Fourierreihen und Fouriertransformation
- Diskrete Cosinus Transformation (DCT) und weitere Transformationsverfahren
- Grundlagen der Medienkodierung und wichtige Kodierverfahren
- Grundlagen analoger und digitaler Medien
- Digitalisierung, Abtastung, AD/DA-Wandlung
- Kompressionsverfahren
- Standards für Audio-, Bild- und Videokodierung / Verarbeitung / Synchronisation / Speicherung / Übertragung (JPEG, MPEG 1, 2, 4, und 7)
- Kommunikationsprotokolle für Multimediale Anwendungen und Kommunikation
- Streaming-Technologien.

Kennen:

Wissen:

siehe Lehrinhalte

Literatur:

Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:

Eren
Modul/LV-Nr.	Modul/Lehrveranstaltung
09 | Künstliche Intelligenz
09 0 | Künstliche Intelligenz

Modulart: Pflicht-/Wahlpflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: Einführung in die Informatik, Programmierkurs 1
Verwendbarkeit: Informatik, Bachelor, Vertiefung Praktische Informatik (Pflichtmodul), Vertiefung Technische Informatik (Wahlpflichtmodul)

Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 2 SWS;
Anwesenheit 60h, Eigenarbeit 90h

Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Vermittlung der grundlegenden Kenntnisse
- von Begriffen und Methoden der Künstlichen Intelligenz und
- von Anwendungen wissensbasierter Methoden in "Intelligenten Systemen"

Entwicklung der Fähigkeit,
- die Einsatzmöglichkeiten dieser Methoden ein- und abschätzen zu können,
- komplexe Problemstellungen zu analysieren, zu strukturieren und geeignete Methoden wissensbasierter Systeme zu ihrer Lösung oder zur Lösung von Teilaufgaben einzusetzen

Lehrinhalt:
Die Vorlesung "Künstliche Intelligenz" gibt, im wesentlichen in Anlehnung an das Buch von Heinsohn und Socher-Ambrosius, eine Einführung in die wichtigsten Begriffe und Methoden der Wissensverarbeitung.

- Einführung (Wissen und Information, Expertensysteme, integrierte Wissensverarbeitung in Intelligenten Systemen)
- Suchverfahren
- Constraint-Propagierung
- Regelsysteme
- Unvollständiges und unsicheres Wissen
- Vages Wissen (Fuzzy-Methoden)
- Architektur Autonomer Roboter
- Anwendungen in Intelligenten Systemen
Literatur:
- Weitere Angaben im Laufe der Veranstaltung.

Hochschullehrer/in:
Schäfer-Richter
Modul/LV-Nr.	Modul/Lehrveranstaltung
10 | Außerfachliches Grundlagenmodul

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 4 SWS, Übung 2 SWS, seminaristische Vorlesung 2 SWS;
120h Anwesenheit, 180h Eigenarbeit
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: siehe Lehrveranstaltungen 10 1, 10 2 und 10 3

Lernziel:
In drei Lehrveranstaltungen erlernen die Studierenden für das Studium wichtige außerfachliche Gebiete:
- 10 1 BWL
- 10 2 Technisches Englisch
- 10 3 Lern- und Arbeitstechniken
Wahlweise kann zu Lern- und Arbeitstechniken ein Kurs aus dem „Studium Generale“-Angebot der Hochschule gewählt werden.

Lehrinhalt:
Siehe 10 1, 10 2 und 10 3

Literatur:
Siehe 10 1, 10 2 und 10 3

Hochschullehrer/in:
Schönberg, Lehrbeauftragte, Zeppenfeld
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Außerfachliches Grundlagenmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulart: Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotshäufigkeit: jährlich</td>
</tr>
<tr>
<td>Voraussetzungen: keine</td>
</tr>
<tr>
<td>Verwendbarkeit: im Modul 10</td>
</tr>
<tr>
<td>Leistungspunkte: 5</td>
</tr>
</tbody>
</table>

| Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 2 SWS; Anwesenheit: 60h, Eigenarbeit: 90h |

<table>
<thead>
<tr>
<th>Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Test (unbenotet)</td>
</tr>
</tbody>
</table>

Lernziel:

Lehrinhalt:
- Geschichtliche Entwicklung der Wirtschaft
- Rechtsgrundlagen
- Betrieb und Unternehmen, Aufbau, Organisation und Aufgabe von Unternehmensteilen
- Betriebliches Rechnungswesen, Kalkulationen und Kostenrechnung
- ABC-Analyse und Netzplantechnik

Literatur:
Kruse/Heun: Betriebswirtschaftslehre

Hochschullehrer/in:
Schönberg
Modul/LV-Nr. Modul/Lehrveranstaltung

10 Außerfachliches Grundlagenmodul

10 2 Lern- und Arbeitstechniken

<table>
<thead>
<tr>
<th>Modulart:</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotshäufigkeit:</td>
<td>jährlich</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>im Modul 10</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>2,5</td>
</tr>
<tr>
<td>Art und Umfang:</td>
<td>gesamt 2 SWS; Vorlesung 2 SWS;</td>
</tr>
<tr>
<td>Anwesenheit:</td>
<td>30h, Eigenarbeit: 45h</td>
</tr>
<tr>
<td>Prüfungsvorleistungen:</td>
<td>Regelmäßige Bearbeitung von Aufgaben</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Test (unbenotet)</td>
</tr>
</tbody>
</table>

Lernziel:
Die Teilnehmer kennen professionelle Standards und Verfahren bei Lern- und Arbeitstechniken und können sie gewinnbringend für sich in Studium und Beruf einsetzen.

Lehrinhalt:
Vortragsfolge von Lehrbeauftragten aus der Industrie

Literatur:
Wird während der Veranstaltung bekannt gegeben.

Hochschullehrer/in:
Lehrbeauftragte, Zeppenfeld
Modul/LV-Nr.	Modul/Lehrveranstaltung
10 | Außerfachliches Grundlagenmodul

10 3 | Technisches Englisch

Modulart: Lehrveranstaltung

Angebotshäufigkeit: jährlich

Voraussetzungen: keine

Verwendbarkeit: im Modul 10

Leistungspunkte: 2,5

Art und Umfang: gesamt 2 SWS;
seminaristische Vorlesung 2 SWS;
Anwesenheit: 30h, Eigenarbeit: 45h

Prüfungsvorleistungen: 80% Anwesendheit und Regelmäßige Bearbeitung von Aufgaben

Prüfungsleistung: Test (unbenotet)

Lernziel:
– mind. Level B2 (gem. Europarat)
– Hören/Sprechen: Kann einer Präsentation über ein vertrautes Thema folgen, eine Präsentation geben oder ein Gespräch über ein relativ breites Spektrum an Themen in Gang halten.
– Lesen: Kann Texten relevante Informationen entnehmen und detaillierte Anweisungen oder Ratschläge verstehen.
– Schreiben: Kann sich Notizen während eines Gespräches/Vortrags machen oder einen Brief schreiben, der auch nicht standardisierte Anfragen enthält.

Lehrinhalt:
Fachbezogener Englischkurs, mit aktiver Beteiligung der Studierenden

Literatur:
Wird während der Veranstaltung bekannt gegeben.

Hochschullehrer/in:
Lehrbeauftragte
Modul/LV-Nr.	Modul/Lehrveranstaltung
11 | Netzbasierte Systeme und Anwendungen

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 4 SWS, Übung 2 SWS, Praktikum 1 SWS; seminaristische Vorlesung 1 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen: siehe 11 1, 11 2 und 11 3
Prüfungsleistung: siehe 11 1, 11 2 und 11 3

Lernziel:
Kennen:
- Kenntnisse der Prinzipien, Protokolle und Architektur des Internets, Vertiefte
- Kenntnisse in einem der Spezialgebiete Sicherheitsaspekte oder Embedded Systems.

Wissen:
- Konfiguration- und Administration von Netzen durchführen können.
- Eingebettete C-Programme unter Berücksichtigung von Echtzeitverhalten kann der Lernende nach der Vertiefung Embedded Systems realisieren.
- Sicherheit von Daten, Netzen und Diensten.

Lehrinhalt:
siehe 11 1, 11 2 und 11 3

Literatur:
siehe 11 1, 11 2 und 11 3

Hochschullehrer/in:
Eren, Swik, Röhrig, Engels
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Netzbasierte Systeme und Anwendungen</td>
</tr>
<tr>
<td>11 1</td>
<td>Kommunikations- und Rechnernetze</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: im Modul 11
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Kenntnisse der Prinzipien, Protokolle und Architektur des Internets

Anwenden:
- Elementare Kommandos der BS Linux und Windows zur Netzwerkconfiguration und zum Netzwerktest sowie einfache Tools zur Protokoll- und Netzwerkanalyse
- Anwendungsprotokoll durch alle Layer verfolgen und interpretieren
- Vorhandenes Netz analysieren
- Konfiguration von Netzkomponenten (Router, Switch) einschliesslich VLAN und NAT
- Eine gesicherte Verbindung einrichten.

Lehrinhalt:
- Referenzmodelle (ISO/OSI, TCP/IP)
- Übertragungstechnik (Übertragungsschicht, Sicherungsschicht), WLAN, xDSL - Netzwerkkomponenten
- Vermittlungsschicht, IP-Protokolle, Adressierung
- Transportprotokolle, TCP, UDP
- Protokolle der Anwendungsschicht (FTP, Telnet, SMTP, HTTP, ...)
- Routing, Netzarchitekturen
- Virtuelle LANs, Network-Address-Translation
- Gesicherte Protokolle (IPSec, SSL/TLS), Authentifizierung
Literatur:
- Douglas Comer: *Computernetzwerke und Internets*, Prentice Hall / Pearson Studium
- S. Tanenbaum: *Computernetzwerke*, Prentice Hall / Pearson Studium

Hochschullehrer/in:
Swik
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Netzbasierte Systeme und Anwendungen</td>
</tr>
</tbody>
</table>

11 2 Datenschutz/Datensicherheit

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: im Modul 11, Vertiefung Praktische Informatik
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, seminaristische Vorlesung 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
- Kennenlernen kryptographischer Grundlagen und Verfahren, typischer Sicherheits-Infrastrukturen anhand von Realisierungsbeispielen in Unternehmen und Dienstleistern.
- Prinzipien der Client-Server-Sicherheit, der sicheren Kommunikation sowie Standards zur Sicherung von Daten und Systemen.
- Zusammenspiel und Klassifikation verschiedener komplementärer Technologien und Standards für Verschlüsselung, Authentisierung, Autorisierung und Datenaustausch.
Lehrinhalt:
- „Public Key“- und „Private Key“-Kryptographieverfahren
- digitale Signatur und digitales Zertifikat
- Extranets
- Virtuelle Private Netze (VPN)
- PGP
- Authentisierungsprotokolle
- Angriffsvarianten und -techniken
- Hash-Verfahren
- Homebanking
- IPsec
- klassische Kryptographie
- SOCKS
- Public Key Infrastructure (PKI)
- Remote Access (RAS)
- Secure HTTP (SHTTP)
- Secure Shell (SSH)
- Secure Socket Layer (SSL)
- Tunneling-Verfahren.

Kennen:
- Kennenlernen kryptographischer Grundlagen, Verfahren, typischer Sicherheits-Infrastrukturen
- Untersuchung von Bewertung von Technologien und Verfahren.

Wissen:
siehe Lehrinhalte

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
Eren
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Netzbasierte Systeme und Anwendungen</td>
</tr>
<tr>
<td>11 4</td>
<td>Embedded Systems</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: im Modul 11, Vertiefung Technische Informatik
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Kenntnisse der Arbeitsweise und Struktur von Mikrocontrollern und deren Einsatz in anwendungsspezifischen Computersystemen.

Wissen:
- Ablauf einfacher Echtzeit-Scheduler (Cyclic Executive, Round Robin).

Können:
Spezifikation, Entwurf und Implementierung eines einfachen Beispielsystems für den Anwendungsbereich autonome Robotik in C mit Abschlusscontest zur IR-Zielfindung.

Lehrinhalt:
- Sensorik
 - aktive Sensoren, passive Sensoren, A/D Wandlung
- Aktorik
 - D/A Wandlung
- Mikrocontroller
 - Multitasking, Interruptsteuerung, Zähler / Timer / Watchdogs, Compare / Capture
 - Einführung in das 80C515 basierte Praktikumsboard
- Grundlagen der Robotik
- High-level embedded systems: Windows CE / Windows Mobile
Literatur:

Hochschullehrer/in:

Engels
Modul/LV-Nr. Modul/Lehrveranstaltung

| 12 | Softwaresysteme 1 |

| Modulart: Pflichtmodul |
| Angebotshäufigkeit: jährlich |
| Voraussetzungen: mind. 60 LP für Zulassung |
| Verwendbarkeit: Informatik, Bachelor |
| Leistungspunkte: 10 |
| Art und Umfang: gesamt 9 SWS; Vorlesung 4 SWS, Übung 2 SWS, Praktikum 2 SWS; Anwesenheit 120h, Eigenarbeit 180h |
| Prüfungsvorleistungen: siehe Lehrveranstaltungen 12 1 und 12 2 |
| Prüfungsleistung: siehe Lehrveranstaltungen 12 1 und 12 2 |

Lernziel:
- Objektorientierte Architekturen und moderne Softwaretechniken
- Überblick über alle wichtigen Web-Techniken erhalten und Websites softwaretechnisch entwickeln und gestalten können.

Kennen:
- Fortgeschrittene Konzepte der objektorientierte Softwareentwicklung.
 - Grundlagen aller relevanten clientseitigen und serverseitigen Web Techniken kennen sowie vertiefte Kenntnisse in XHTML/CSS.
 - Grundprinzipien der Web-Ergonomie und barrierefreien Gestaltung kennen.

Anwenden:

- Kleinere Aufgabenstellungen mit XML, JavaScript, PHP, JSP und ASP.NET realisieren können.
- Websites mittlerer Komplexität mit XHTML/CSS softwaretechnisch entwickeln und barrierefrei/ergonomisch gestalten können.

Lehrinhalt:
siehe Lehrveranstaltungen 12 1 und 12 2
Literatur:
- Heide Balzert, Lehrbuch der Objektmodellierung, 1999
- Helmut Balzert, Lehrbuch der Software-Technik Bd. 1, 2001
- Heide Balzert: Basiswissen Web-Techniken, 2005
- Helmut Balzert: HTML, XHTML & CSS, 2003
- Heide Balzert: Webdesign & Web-Ergonomie, 2004

Hochschullehrer/in:
Balzert, Sachweh, Zeppenfeld
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Softwaresysteme 1</td>
</tr>
<tr>
<td>12 1</td>
<td>Softwaretechnik 2</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: im Modul 12
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Vollständige Durchführung eines Softwareprojekts
Prüfungsleistung: Klausur

Lernziel:
Objektorientierte Architekturen und moderne Softwaretechniken

Kennen:
- Fortgeschrittene Konzepte der objektorientierte Softwareentwicklung.
- Spezifischer Einblick in Konzepte moderner Softwaretechniken

Anwenden:
- Anbindung von Fachkonzepten an grafische Benutzungsoberflächen und Datenbanken.
- Entwicklung und Umsetzung von Architekturmodellen.

Lehrinhalt:
- Fortführung der objektorientierten Modellierung
 - Anbindung von Fachkonzepten an relationale Datenbanken
 - Erstellen eines Entwurfsmodells mittels Drei-Schichten-Architektur
- Moderne Softwaretechniken
 - Komponentenbasierte Softwareentwicklung
 - EJBs (Enterprise Java Beans)
 - MDA (Model Driven Architecture)
Literatur:
- Heide Balzert, Lehrbuch der Objektmodellierung, 1999
- Helmut Balzert, Lehrbuch der Software-Technik Bd. 1, 2001
- Olaf Zwintzscher: Software-Komponenten im Überblick, 2004

Hochschullehrer/in:
Balzert, Sachweh, Zeppenfeld
Modul/LV-Nr.	Modul/Lehrveranstaltung
12 | Softwaresysteme 1
12 2 | Web Engineering 1

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Softwaretechnik 1, Programmierkurse
Verwendbarkeit: im Modul 12
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Bearbeitung und Präsentation von Aufgaben und/oder Bestehen eines automatisierten Tests
Prüfungsleistung: Klausur

Lernziel:
Studierende sollten einen Überblick über alle wichtigen Techniken erhalten, die heute für die Erstellung von Web-Anwendungen eingesetzt werden. Außerdem sollen sie Websites mit clientseitigen Techniken softwaretechnisch entwickeln sowie barrierefrei und ergonomisch gestalten können.

Kennen:
- Grundlagen von XML, JavaScript, PHP, JSP, ASP.NET (C#) und Ajax kennen
- Vertiefte Kenntnisse in XHTML und CSS
- Web-Architekturen mit UML-Profilen modellieren können.
- Anforderungen der barrierefreien Gestaltung kennen.
- Grundlagen des Webdesign und der Web-Ergonomie kennen.

Anwenden:
- Kleinere Aufgabenstellungen mit XML, JavaScript, PHP, JSP und ASP.NET realisieren können.
- Websites mittlerer Komplexität softwaretechnisch entwickeln können:
 - Mit XHTML/CSS realisieren.
 - Barrierefrei gestalten.
 - Ergonomisch gestalten.
<table>
<thead>
<tr>
<th>Lehrinhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Basiswissen XHTML und CSS</td>
</tr>
<tr>
<td>- Basiswissen XML, einschließlich Schema und Stylesheets</td>
</tr>
<tr>
<td>- Basiswissen JavaScript</td>
</tr>
<tr>
<td>- Basiswissen PHP einschließlich der objektorientierten Konzepte und Datenbank-Anbindung (mySQL)</td>
</tr>
<tr>
<td>- Basiswissen: JSP, ASP.NET mit C#</td>
</tr>
<tr>
<td>- Grundkonzepte von Ajax (in Kombination mit JSP)</td>
</tr>
<tr>
<td>- Methodisches Vorgehen beim Erstellen von Web-Anwendungen</td>
</tr>
<tr>
<td>- UML-Modelle für Web-Anwendungen</td>
</tr>
<tr>
<td>- Vertiefung XHTML und CSS</td>
</tr>
<tr>
<td>- Barrierefreiheit</td>
</tr>
<tr>
<td>- Webdesign & Web-Ergonomie (Navigation, Dialogführung, Farben, Texte im Web, Formulare und Tabellen gestalten)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Heide Balzert: Basiswissen Web-Techniken, 2005</td>
</tr>
<tr>
<td>- Helmut Balzert: HTML, XHTML & CSS , 2003</td>
</tr>
<tr>
<td>- Heide Balzert: Webdesign & Web-Ergonomie, 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschullehrer/in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balzert</td>
</tr>
<tr>
<td>Modul/LV-Nr.</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Systemgrundlagen
Verwendbarkeit: Informatik, Bachelor, Vertiefung Praktische Informatik
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 5 SWS, Übung 2 SWS, Praktikum 1 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen: siehe Lehrveranstaltungen 03 1 und 03 3
Prüfungsleistung: siehe Lehrveranstaltungen 03 1 und 03 3

Lernziel:
Die Teilnehmerinnen und Teilnehmer sind in der Lage Applikationen zu konzipieren und zu entwickeln. Dabei werden hier Schwerpunkte bei den fortgeschrittenen Datenbanktechniken und bei ERP-Systemen gesetzt.

Lehrinhalt:
siehe Lehrveranstaltungen 03 1 und 03 3

Literatur:
siehe Lehrveranstaltungen 03 1 und 03 3

Hochschullehrer/in:
Krägeloh, Schönberg
Modul/LV-Nr.	Modul/Lehrveranstaltung
13 | Softwaresysteme 2
13 1 | Datenbanken 2

Modulart: Lehrveranstaltung

Angebotshäufigkeit: jährlich

Voraussetzungen: mind. 60 LP für Zulassung

Verwendbarkeit: im Modul 13

Leistungspunkte: 5

Art und Umfang: gesamt 4 SWS;
Vorlesung 3 SWS, Praktikum 1 SWS;
Anwesenheit 60h, Eigenarbeit 90h

Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben

Prüfungsleistung: Klausur

Lernziel:
Grundkonzepte des Datenbankentwurfs, der Integritätssicherung und der Datenbanktechnik anwenden können.

Kennen:

Anwenden:
Lehrinhalt:
- Datenbankentwurf nach dem E-R-Modell, Überführen von E-R-Modellen in das relationale Modell
- Normalformen
- Normalisierung von Relationen
- Definition deklarativer Integritätsregeln und prozeduraler Integrität
- Verwendung von Constraints und Triggern
- Datenbankintegrität und Transaktionskonzept
- Das Nutzer-/Rechtesystem in SQL
- Implementierung von Geschäftsregeln durch Trigger oder Stored Procedures
- Postrelationale Datenbankmodelle, Beschränktheit des Relationalen Modells, Objekt-Orientiertes Modell, Objekt-Relationale Modell, Vergleich bestehender Systeme
- Aktuelle Datenbankanwendungen: DataWarehouse, DataMining, XML-Datenbanken

Literatur:
Elmasri: Grundlagen von Datenbanksystemen 3. Auflage 2002 (Addison Wesley)

Hochschullehrer/in:
Krägeloh
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Softwaresysteme 2</td>
</tr>
<tr>
<td>13 2</td>
<td>Standardsoftware (BWL-Anwendungen)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulart:</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotshäufigkeit:</td>
<td>jährlich</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>mind. 60 LP für Zulassung, BWL 101</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>im Modul 13</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Art und Umfang:</td>
<td>gesamt 4 SWS; Vorlesung 2 SWS, Übung 2 SWS; Anwesenheit 60h, Eigenarbeit 90h</td>
</tr>
<tr>
<td>Prüfungsvorleistungen:</td>
<td>Regelmäßige Bearbeitung von Aufgaben</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Klausur</td>
</tr>
</tbody>
</table>

Lernziel:
Die Teilnehmer sind in der Lage in verschiedenen ERP-Systemen betriebswirtschaftliche Konzepte und Strukturen zu implementieren und anzuwenden.

Lehrinhalten:
- Darstellung des Entwurfes und der Realisierung betrieblicher computergestützter Informationssysteme mit einer adäquaten Umsetzung des Wissen in EDV-geeignete Strukturen.
- Definition, Klassifikation und Integration betrieblicher Informationssysteme
- Methoden zur Beschreibung von Informationssystemen
- Beispiele funktionaler Informationssysteme

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
Schönberg
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Seminar</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; seminaristische Vorlesung 4 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: siehe Lehrveranstaltungen 08 1 und 08 2
Prüfungsleistung: siehe Lehrveranstaltungen 08 1 und 08 2

Lernziel:
Die Studierenden lernen, einen Vortrag selbständig auszuarbeiten und vorzutragen. Sie können dabei 2 Lehrveranstaltungen aus drei Angeboten auswählen:
- **18 1 Seminar 1:** ein fachlich ausgerichtetes Seminar
- **18 2 Präsentationstechniken,** mit Betonung auf allgemeine Techniken der Präsentation
- **183** Eine Veranstaltung des Studium Generale mit einer außerfachlichen Ausrichtung

Lehrinhalt:
siehe Lehrveranstaltungen 08 1 und 08 2

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
siehe Lehrveranstaltungen 08 1 und 08 2
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Seminar</td>
</tr>
<tr>
<td>18 1</td>
<td>Seminar 1</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: im Modul 18
Leistungspunkte: 2,5
Art und Umfang: gesamt 2 SWS; seminaristische Vorlesung 2 SWS; Anwesenheit 30h, Eigenarbeit 45h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: ausgearbeiteter Seminarvortrag

Lernziel:
Die Studierenden sollen zeigen, dass sie in der Lage sind das im Studium erlernte Wissen auf ein ihnen unbekanntes Spezialthema anzuwenden und dieses den Kommilitonen verständlich zu präsentieren.

Lehrinhalt:
Referat über ein ausgewähltes Spezialthema der Informatik

Literatur:
Wird in der Veranstaltung bekannt gegeben

Hochschullehrer/in:
alle Informatik-Professorinnen und Professoren
Modul/LV-Nr.	Modul/Lehrveranstaltung
18 | Seminar

18 2 Präsentationstechniken

<table>
<thead>
<tr>
<th>Modulart:</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotshäufigkeit:</td>
<td>jährlich</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>mind. 60 LP für Zulassung</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>im Modul 18</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>2,5</td>
</tr>
<tr>
<td>Art und Umfang:</td>
<td>gesamt 2 SWS; seminaristische Vorlesung 2 SWS; Anwesenheit 30h, Eigenarbeit 45h</td>
</tr>
<tr>
<td>Prüfungsvorleistungen:</td>
<td>Kurzpräsentation</td>
</tr>
<tr>
<td>Prüfungsleistung:</td>
<td>Präsentationsentwurf und -durchführung</td>
</tr>
</tbody>
</table>

Lernziel:
Studierende können Präsentationen planen und öffentlich vortragen

Lehrinhalt:

Literatur:
- Hierhold, E.: Sicher vortragen - Wirksam präsentieren, Mebereuter, Wien
- Seifert, J.: Visualisieren, Präsentieren, Moderieren, Gabal Bremen

Hochschullehrer/in:
Hesseler, Lehrbeauftragte
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Projektarbeit</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: halbjährlich
Voraussetzungen: mind. 90 LP für Zulassung
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 18
Art und Umfang: gesamt 2 SWS; Praktikum 2 SWS;
Anwesenheit (Kontaktzeit) 30h, Eigenarbeit 510h
Prüfungsvorleistungen: keine
Prüfungsleistung: Ausarbeitung mit Präsentation

Lernziel:
siehe 09 1 und 09 2

Lehrinhalt:
siehe 09 1 und 09 2

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
Alle Professorinnen und Professoren
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Projektarbeit</td>
</tr>
</tbody>
</table>

19 1 Projektarbeit 1

Modulart: Lehrveranstaltung
Angebotshäufigkeit: halbjährlich
Voraussetzungen: mind. 90 LP für Zulassung
Verwendbarkeit: im Modul 19
Leistungspunkte: 10
Art und Umfang: gesamt 1 SWS; Praktikum 1 SWS;
Anwesenheit (Kontaktzeit) 15h, Eigenarbeit 285h
Prüfungsvorleistungen: keine
Prüfungsleistung: Ausarbeitung mit Präsentation

Lernziel:
Fähigkeit zur Lösung informatikspezifischer Probleme unter Berücksichtigung begrenzter Ressourcen, zur Spezifikation von Anforderungen, zur Modellierung von Systemen, zur Zielsetzung und Planung von Projekten, zur Sicherung der Qualität, zur Vor- und Nachkalkulation des Zeitaufwandes und zur verständlichen Dokumentation.

Lehrinhalt:

Die in den Projekten direkt benötigten spezifischen Kenntnisse werden bei Bedarf in Blockveranstaltungen vermittelt.
Regelmäßige Projektsitzungen sollen den Studierenden die Möglichkeit geben, die oben genannten Fähigkeiten zur Teamarbeit durch Einübung zu erwerben. Dabei sollte insbesondere die Qualitätssicherung durch Präsentation von Ergebnissen aus Analyse, Entwurf und Implementierung trainiert werden.

Besondere Maßgaben zur Durchführung:
Der Fachbereich strebt an, dass Studierende ihre Projektarbeiten möglichst in Unternehmen durchführen. Der Fachbereich hat eine Ordnung erlassen, die den Ablauf dieser Projekte regelt. Sie ist Anlage dieses Modulhandbuchs.
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muss vom Studierenden selbst ermittelt werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschullehrer/in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Professorinnen und Professoren</td>
</tr>
</tbody>
</table>
Modul/LV-Nr. | Modul/Lehrveranstaltung
---|---
19 | Projektarbeit
19 2 | Projektarbeit 2

Modulart: Lehrveranstaltung
Angebotshäufigkeit: halbjährlich
Voraussetzungen: mind. 90 LP für Zulassung
Verwendbarkeit: im Modul 19
Leistungspunkte: 8
Art und Umfang: gesamt 1 SWS; Praktikum 1 SWS;
Anwesenheit (Kontaktzeit) 15h, Eigenarbeit 225h
Prüfungsvorleistungen: keine
Prüfungsleistung: Ausarbeitung mit Präsentation

Lernziel:
Fähigkeit zur Lösung informatikspezifischer Probleme unter Berücksichtigung begrenzter Ressourcen, zur Spezifikation von Anforderungen, zur Modellierung von Systemen, zur Zielsetzung und Planung von Projekten, zur Sicherung der Qualität, zur Vor- und Nachkalkulation des Zeitaufwandes und zur verständlichen Dokumentation.

Lehrinhalt:

Die in den Projekten direkt benötigten spezifischen Kenntnisse werden bei Bedarf in Blockveranstaltungen vermittelt.
Regelmäßige Projektstunden sollen den Studierenden die Möglichkeit geben, die oben genannten Fähigkeiten zur Teamarbeit durch Einübung zu erwerben. Dabei sollte insbesondere die Qualitätssicherung durch Präsentation von Ergebnissen aus Analyse, Entwurf und Implementierung trainiert werden.

Besondere Maßgaben zur Durchführung:
Der Fachbereich strebt an, dass Studierende Ihre Projektarbeiten möglichst in Unternehmen durchführen. Der Fachbereich hat eine Ordnung erlassen, die den Ablauf dieser Projekte regelt. Sie ist Anlage dieses Modulhandbuches.
Literatur:
Muss vom Studierenden selbst ermittelt werden.

Hochschullehrer/in:
Alle Professorinnen und Professoren
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Außerfachliches Modul</td>
</tr>
</tbody>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; seminaristische Vorlesung 4 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: siehe Lehrveranstaltungen 20 1 und 20 2
Prüfungsleistung: siehe Lehrveranstaltungen 20 1 und 20 2

Lernziel:
Im außerfachlichen Modul werden Gebiete erlernt, die außerhalb der Informatik liegen, aber für die Berufsfelder der Informatikerinnen und Informatiker von Bedeutung sind.

Lehrinhalt:
siehe Lehrveranstaltungen 20 1 und 20 2

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
Lehrbeauftragte
Modul/LV-Nr.	Modul/Lehrveranstaltung
20 | Außerfachliches Modul

20 1 Informatik und Gesellschaft

Modulart: Lehrveranstaltung

Angebotshäufigkeit: jährlich

Voraussetzungen: keine

Verwendbarkeit: im Modul 20

Leistungspunkte: 2,5

Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS;
Anwesenheit 30h, Eigenarbeit 45h

Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben

Prüfungsleistung: Klausur

Lernziel:
Kennen lernen aller Aspekte der Computertechnologie und der Informatik als Wissenschaft um problematische und umstrittene Einsatzbereiche und Forschungsthemen einschätzen und verantwortungsbewusst beurteilen zu können.

Lehrinhalt:

Literatur:
Wird während der Veranstaltung bekannt gegeben.

Hochschullehrer/in:
Lehrbeauftragte
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Außerfachliches Modul</td>
</tr>
</tbody>
</table>

| 20 2 | DV-Recht |

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 20
Leistungspunkte: 2,5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS; Anwesenheit 30h, Eigenarbeit 45h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:

Lehrinhalt:
Übersicht und Begriffe; Gerichte und gerichtliche Verfahren; Verwaltungsrecht; Bürgerliches Recht mit Handelsrecht; Überblick Wirtschafts- und Arbeitsrecht, Urheberrecht, Datenschutzrecht

Literatur:
Wird während der Veranstaltung bekannt gegeben.

Hochschullehrer/in:
Lehrbeauftragte
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
</table>

Modulart: Pflichtmodul
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: Informatik, Bachelor, Vertiefung Technische Informatik
Leistungspunkte: 10
Art und Umfang: gesamt 8 SWS; Vorlesung 4 SWS, Übung 3 SWS, Praktikum 1 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen: siehe Lehrveranstaltungen 21 1 und 21 2
Prüfungsleistung: siehe Lehrveranstaltungen 21 1 und 21 2

Lernziel:
Die Veranstaltungen vermitteln exemplarisch Kenntnisse aus den wichtigsten Gebieten der Physik, die es erlauben, technische Anwendungen der Informatik z.B. auf dem Gebiet der Steuerung, der Regelung und der Simulation zu verstehen und zu gestalten.
Die Struktur der "Zustandsbeschreibung" (State Space Representation) als Beschreibungsform der unterschiedlichsten Systemarten erkennen lernen. (Nämlich aller Systeme, die als gewöhnliche Differentialgleichung, als gewöhnliche Differenzengleichung oder als endlicher Automat beschreibbar sind).

Lehrinhalt:
siehe Lehrveranstaltungen 21 1 und 21 2

Literatur:
siehe Lehrveranstaltungen 21 1 und 21 2

Hochschullehrer/in:
Goldammer, Patzelt
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 1</td>
<td>Phys.-elektrotechn. Grdl. 1</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: keine
Verwendbarkeit: im Modul 21
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Die Veranstaltungen vermitteln exemplarisch Kenntnisse aus den wichtigsten Gebieten der Physik, die es erlauben, technische Anwendungen der Informatik z.B. auf dem Gebiet der Steuerung, der Regelung und der Simulation zu verstehen und zu gestalten.

Lehrinhalt:
- Kinematik: Beschreibung von Bewegungen in kartesischen Koordinaten und in Polarkoordinaten
- Dynamik: Energie, Leistung, Impuls, Massenträgheitsmoment, Drehmoment, Drehimpuls
- Gravitationsfeld: Feldstärke, Potential, Satellitenbewegung
- Strömungsdynamik: Bernoullisches Gesetz, Viskosität, Reibungskräfte bei laminaren und bei turbulenten Strömungen
- Thermodynamik: Kinetische Gastheorie, reale Gase, Kreisprozesse, Energieströme
- Schwingungen: Lineare Schwingung, Drehschwingung, Dämpfung, Resonanz, Überlagerung von Schwingungen
- Wellen: 1-dim. Wellengleichung, Energietransport, Doppler-Effekt, Interferenz
- Optik: Kohärente Optik, Welle-Teilchen-Dualismus, Unschärferelation, Laser, Holografie, Strahlenoptik, Dämpfung
- Elektrisches Feld: Dipolfeld, Dielektrikum, Piezoelektrizität
- Atommodelle: Bohrsches Modell, Sommerfeld-Modell, Lichtspektren
- Elektrischer Strom: Leitungsmechanismen in Metallen, in Halbleitern in Flüssigkeiten und in Gasen
- Elektromagnetische Kopplung
- Radioaktivität
Literatur:
- Skript
- Dobrinski, Krakau, Vogel: Physik für Ingenieure, Teubner-Verlag
- J. Orear: Grundlagen der modernen Physik, Hanser-Verlag
- Paul A. Tipler: Physik, Spektrum Akademischer Verlag

Hochschullehrer/in:
von Goldammer
Modul/LV-Nr. Modul/Lehrveranstaltung
21 2 Phys.-elektrotechn. Grdl. 2

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: Lineare Algebra, Analysis, komplexe Zahlen
Verwendbarkeit: im Modul 21
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 2 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Die Struktur der "Zustandsbeschreibung" (State Space Representation) als Beschreibungsform der unterschiedlichsten Systemarten erkennen lernen.
(Nämlich aller Systeme, die als gewöhnliche Differentialgleichung, als gewöhnliche Differenzengleichung oder als endlicher Automat beschreibbar sind).

Lehrinhalt:
- Elektrisches Netzwerk als implizite Differentialgleichung beschreiben.
- Simulation der impliziten Differentialgleichung im Digitalrechner.
- Schaltwerk und endlicher Automat als Hardware und Software.

Literatur:
- Weißgerber, W.: "Elektrotechnik für Ingenieure", Band 1 bis 4
 Friedr. Vieweg & Sohn Braunschweig/Wiesbaden 1991
- Tietze, U., Schenk, Ch.: Halbleiter-Schaltungstechnik
 -Verschiedene Skripte

Hochschullehrer/in:
Patzelt
Modul/LV-Nr.	Modul/Lehrveranstaltung
22 | Hardware Engineering
22 0 | Hardware Engineering

Modulart: Pflichtmodul

Angebotshäufigkeit: jährlich

Voraussetzungen: keine

Verwendbarkeit: Informatik, Bachelor, Vertiefung Technische Informatik

Leistungspunkte: 5

Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 120h, Eigenarbeit 180h

Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben

Prüfungsleistung: Klausur

Lernziel:

Kennen:
- Mealy- & Moore-Automaten
- Bausteine der Digitaltechnik
- VHDL Sprachelemente
- grundlegende HW-Technologien

Wissen:
- Übergang von Logik zu Schaltalgebra
- Zusammenhang Entwurfsparameter Performance, Fläche, Leistungsaufnahme
- Kosten beschreiben
- Verfahren der Schaltalgebra

Können:
- Minimierung von Schaltfunktionen
- Entwurf von Schaltwerken
- Erstellen und Simulation einfacher VHDL Programme
- Konfigurieren eines FPGA Bausteins am Beispiel des Xilinx Spartan-3 Entwicklungsboards
- Realisierung einer VGA Bildschirmansteuerung.
Lehrinhalt:
- Einführung
- Formale Grundlagen
 - Begriffe, Klassen, Darstellungsformen (Tabellarisch, Grafisch, Algebraisch)
 - Normalformen (KNF, DNF)
 - Minimierung (Quine/McCluskey, KV, Nelson, Petrick)
 - Schaltnetze
 - Sequentielle Logik
 - Schaltwerke & Automaten.
- Bausteine der Digitaltechnik u.a. Gatter, Flipflops, Multiplexer, Register, Addierer, Zähler.
- Syntax & Semantik der Hardwarebeschreibungssprache VHDL
- Simulation von Hardwarebeschreibungen, Entwurf digitaler Schaltungen, Entwurf von Zustandsautomaten.
- Hardwareentwurf in FPGA Technologie

Literatur:
- Sikora, A, Drechsler, R. Software-Engineering und Hardware-Design, Eine systematische Einführung, Hanser, 2002

Hochschullehrer/in:
Engels
Modul/LV-Nr. Modul/Lehrveranstaltung

| 23 | Technische Systeme |

Modulart:	Pflichtmodul
Angebotshäufigkeit:	jährlich
Voraussetzungen:	mind. 60 LP für Zulassung, Lineare Algebra, Analysis, Laplace-Transformation, Physikalisch-elektrotechnische Grundlagen
Verwendbarkeit:	Informatik, Bachelor, Vertiefung Technische Informatik
Leistungspunkte:	10
Art und Umfang:	gesamt 8 SWS; Vorlesung 4 SWS, Übung 2 SWS, Praktikum 2 SWS; Anwesenheit 120h, Eigenarbeit 180h
Prüfungsvorleistungen:	siehe Lehrveranstaltungen 03 1 und 03 2
Prüfungsleistung:	siehe Lehrveranstaltungen 03 1 und 03 2

Lernziel:

Kennen:
- Methoden und Anwendungen der Automatisierungstechnik
- die wichtigsten Prozesse, Methoden, Techniken, Werkzeuge und Normen, die im bei der Realisierung technischer Systeme relevant sind.

Wissen:
- wie unterschiedliche Prozesse und Methoden in Beziehung gesetzt werden.

Anwenden:
- Mathematische Modellbildung von kontinuierlichen und ereignisdiskreten technischen Prozessen
- Entwerfen von kontinuierlichen Reglern
- Entwerfen von ereignisdiskreten Systemen
- Der Lernende sollte in der Lage sein, in technischen Standardsituationen die angemessene Vorgehensweise auszuwählen und durchzuführen und die Umsetzung zu planen und zu organisieren.

Lehrinhalten:
siehe Lehrveranstaltungen 03 1 und 03 2

Literatur:
siehe Lehrveranstaltungen 03 1 und 03 2

Hochschullehrer/in:
Röhrig, Engels
Modul/LV-Nr. Modul/Lehrveranstaltung
23 Technische Systeme

23 1 Automatisierungstechnik

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: im Modul 23
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Methoden und Anwendungen der Automatisierungstechnik

Anwenden:
- Mathematische Modellbildung von kontinuierlichen technischen Prozessen
- Simulation von technischen Prozessen und Regelsystemen
- Entwerfen von kontinuierlichen Reglern
- Entwerfen von Fuzzy-Reglern
- Implementierung digitaler Regler

Lehrinhalt:
- Ziele und Aufgaben der Automatisierungstechnik
- Grundlegende Eigenschaften dynamischer Systeme
- Beschreibung kontinuierlicher Systeme
- Stabilität dynamischer Systeme
- Einschleifige Regelkreise
- Entwurfsverfahren für kontinuierliche Regler
- Erweiterte Regelstrukturen wie Kaskadenregelung
- Vorsteuerung
- Vorfilter und Störgrößenaufschaltung
- Fuzzy-Control
- Digitale Regler
Literatur:
- Unbehauen, Heinz: Regelungstechnik I: Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme, Vieweg Verlag, 2005

Hochschullehrer/in:
Röhrig
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Technische Systeme</td>
</tr>
</tbody>
</table>

| Modul/Lehrveranstaltung | 23 2 Systems Engineering 1 |

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Verwendbarkeit: im Modul 23
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kenntnis der verschiedenen Ebenen des Systems Engineerings:
- Technisches Management
- System Analyse & Entwurf und Produkt-Realisierung

Wissen:
- Klassifikation von Phasenmodellen
- Zusammenspiel der Phasen und Entscheidungsparameter

Können:
Anwenden der UML und der SysML für technische Anwendungen und Erstellung und Optimierung komplexer Projektpläne.

Lehrinhalt:
- Charakteristika von Systemen
- Projektplanung und -management
- Teilprozesse des Systems Engineering u.a. Lebenszyklusmodelle, Systemanalyse, Risikoabschätzung, konzeptueller Entwurf, detaillierter Entwurf, Implementierung, Qualitätssicherung.
- Spezifische Methoden zur Beschreibung von Systemeigenschaften
 - Modellierung nebenläufiger Systeme unter Echtzeitbedingungen
 - Vertiefung endlicher Automaten als Beschreibungsmittel
 - Einführung Petri Netze als Beschreibungsmittel nebenläufiger Prozesse
- Vermittlung der Kenntnis über gängige Werkzeuge und Standards, u.a. RUP-SE, ROPES, UML/SysML, SA/RT.
Literatur:
- www.sysml.org

Hochschullehrer/in:
Engels
Modul/LV-Nr. Modul/Lehrveranstaltung

65 Bachelorarbeit (Thesis) und Kolloquium

<table>
<thead>
<tr>
<th>Modulart:</th>
<th>Pflichtmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotshäufigkeit:</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>Informatik, Bachelor</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td></td>
</tr>
<tr>
<td>Bachelorarbeit:</td>
<td>12</td>
</tr>
<tr>
<td>Kolloquium:</td>
<td>3</td>
</tr>
</tbody>
</table>

Art und Umfang:
Bachelorarbeit: 20h Anwesenheit, 340h Eigenarbeit
Kolloquium: 3h Anwesenheit, 87h Eigenarbeit

Prüfungsvorleistungen: siehe § 23 der Prüfungsordnung
Prüfungsleistung: Bachelorarbeit + 30 bis 45 min. Kolloquium + Prüfungsgespräch

Lernziel:

Lehrinhalt:

Organisation:
<table>
<thead>
<tr>
<th>Litatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muß vom Studierenden selbst ermittelt werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschullehrer/in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Professorinnen und Professoren</td>
</tr>
</tbody>
</table>
Katalog der Lehrveranstaltungen für die Wahlpflichtmodule

<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>808</td>
<td>Componentware</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen: Technologien und Einsatzgebiete komponentenorientierter Softwareentwicklung.
Anwenden: Entwicklung von Software für die unterschiedlichen Komponentensysteme.

Lehrinhalt:
– Definitionen: Software-Komponente, Softwarearchitektur, Wiederverwendung
– Überblick über verschiedene Konzepte, z.B. UNIX-Shell, Proceduren, Module, C++ STL, OLE
– Java-Applets, Java-Beans (Bean Development Kit)
– Middleware: InfoBus, CORBA (IDL)
– Enterprise Application Integration, J2EE, Enterprise Java Beans
– Vergleiche zu (D)COM(+), .NET, WebServices
– Programmierbeispiele zu allen Anwendungen

Literatur:
- Frank Griffel: Componentware, dpunkt 1998
- Claudia Piemont: Komponenten in Java, dpunkt.verlag, 1999
- Peter Herzum: Introduction to Component-Based Development for Enterprise, OOP 2001
- J2EE Tutorial: http://java.sun.com/j2ee/download.html#tutorial

Hochschullehrer/in:
Sachweh
Modul/LV-Nr.	Modul/Lehrveranstaltung
809 | Computergraphik

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Analysis 1, Lineare Algebra 1
Leistungspunkte: 5

Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h

Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Wichtige mathematische und algorithmische Konzepte der Computergraphik (s.u.)

Anwenden:
Programmierung von Computergraphik-Anwendungen mit Hilfe einer Standard-Programmierschnittstelle wie OpenGL

Lehrinhalt:
- Überblick über Graphik-Hardware und -Software
- Mathematische Grundlagen der Computergraphik:
 - Transformationen und Projektion
 - Mathematische Beschreibung von Kurven und Flächen
- Graphische Algorithmen:
 - Clipping, Rasterkonvertierung, Verfahren zur Entfernung verdeckter Kanten und Flächen und zur schattierten Darstellung, Texturierung
- Standard-Programmierschnittstellen, z.B. OpenGL

Literatur:
- M. Bender, M. Brill: Computergrafik, Hanser-Verlag, 2003
- A. Nischwitz, P. Haberäcker: Masterkurs Computergrafik und Bildverarbeitung, Vieweg Verlag, 2004
- Zeppenfeld: Lehrbuch der Grafikprogrammierung, Spektrum Akademischer Verlag, 2004

Hochschullehrer/in:
Stark
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>812</td>
<td>Datenbanken 2</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 3 SWS, Praktikum 1 SWS;
Anwesenheit: 60 h, **Eigenarbeit:** 90 h
Prüfungsvorleistungen: keine
Prüfungsleistung: Klausur

Lernziel:
Grundkonzepte des Datenbankentwurfs, der Integritätssicherung und der Datenbanktechnik anwenden können.

Kennen:

Anwenden:

Lehrinhalt:
Aktuelle Datenbankanwendungen: DataWarehouse, DataMining, XML-Datenbanken.
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmasri: Grundlagen von Datenbanksystemen 3. Auflage 2002 (Addison Wesley)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschullehrer/in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krägeloh</td>
</tr>
</tbody>
</table>
Modul/LV-Nr. | Modul/Lehrveranstaltung
--- | ---
813 | Datenschutz und Datensicherheit

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Kryptographische Grundlagen und Verfahren, typische Sicherheits-Infrastrukturen anhand von Realisierungsbeispielen in Unternehmen und Dienstleistern.
Zusammenspiel und Klassifikation verschiedener komplementärer Technologien und Standards für Verschlüsselung, Authentisierung, Autorisierung und Datenaustausch.

Anwenden:
Untersuchung von Bewertung von Technologien und Verfahren im Bereich Datenschutz und Datensicherheit
Prinzipien der Client-Server-Sicherheit, der sicheren Kommunikation sowie Standards zur Sicherung von Daten und Systemen.

Lehrinhalt:
„Public Key“- und „Private Key“-Kryptographieverfahren, digitale Signatur, digitales Zertifikat, Extranets, Virtuelle Private Netze (VPN), PGP, Authentisierungsprotokolle, Angriffsvarianten und -techniken, Hash-Verfahren, Homebanking, IPsec, klassische Kryptographie, SOCKS, Public Key Infrastructure (PKI), Remote Access (RAS), Secure HTTP (SHTTP), Secure Shell (SSH), Secure Socket Layer (SSL), Tunneling-Verfahren.

Literatur:
Wird in der Vorlesung bekannt gegeben.

Hochschullehrer/in:
Eren
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>814</td>
<td>Digitale Bildverarbeitung</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Analysis 1, Analysis 2, Lineare Algebra 1
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 3 SWS, Praktikum 1 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Wichtige mathematische und algorithmische Konzepte der digitalen Bildverarbeitung (s.u.)

Anwenden:
- Lösen von Bildverarbeitungs-Problemen durch Kombination der behandelten Verfahren
- Programmierung von Bildverarbeitungs-Anwendungen mit Hilfe einer Programmierschnittstelle, z.B. Java Advanced Imaging API

Lehrinhalt:
- Überblick über Bildverarbeitungs-Hardware und -Software
- Verfahren zur Bildverbesserung, Bildrestauration und geometrischen Manipulation von Bildern
- Morphologische Bildverarbeitung
- Diskrete Fourier-Transformation und Anwendungen
- Verfahren zur Bildsegmentierung, Merkmalsextraktion und Bildanalyse
- Programmierschnittstellen, z.B. Java Advanced Imaging API

Literatur:
- W. Burger, M. J. Burge: Digitale Bildverarbeitung, Springer-Verlag, 2005
- A. Nischwitz, P. Haberäcker: Masterkurs Computergrafik und Bildverarbeitung, Vieweg Verlag, 2004

Hochschullehrer/in:
Stark
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>815</td>
<td>Digitale Signalverarbeitung</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Analysis 1, Analysis 2, Lineare Algebra 1
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 3 SWS, Praktikum 1 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Können:
Anwenden von mathematischen Grundlagen zum Verständnis von Verfahren in der multimedialen Signalverarbeitung.

Lehrinhalt:
Literatur:
- S.D. Stearns / D.R. Hush: Digitale Verarbeitung analoger Signale, 7. Auflage
- Brauch/Dreyer/Haake: Mathematik für Ingenieure, 6. Auflage

Hochschullehrer/in:
Eren
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>828</td>
<td>Standardsoftware (ERP-Systeme)</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Kenntnisse des Grundstudiums
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 2 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Vermittlung von Grundlagenwissen hinsichtlich der Bedeutung und Entwicklung von Standardsoftware sowie Sensibilisierung für die hiermit verbundenen Problemfelder. Theoretische Kenntnisse über Arten von Anpassungen an Standardsoftware sowie deren praktische Umsetzung an einem konkreten ERP-System.

Lehrinhalt:
- Allgemeine Grundlagen (Begriffsdefinition, historische Entwicklung, ...)
- Standardisierungsgedanke (Klassifizierung und Abgrenzung zur Eigenentwicklung, Abdeckungsgrad, ...)
- Integrationsaspekte (technische und organisatorische Integration, Beispiele und Konsequenzen, ...)
- betriebswirtschaftliche Komponenten (FiBu, HR, Logistik, Produktion, ...)
- Geschäftsprozesse (Modellierungsmethoden, und Werkzeuge, Referenzmodell, ...)
- Auswahlprozess (Marktübersicht und -aufteilung, Auswahlkriterien, Entscheidungsprozess, ...)
- Einführung eines ERP-Systems (Projektansatz, Einführungsstrategien, Vorgehensweisen)
- technische Grundlagen (Systemaufbau, Hardware-Plattformen und unterstützte Datenbanken, ...)
- Installation, Wartung und Betrieb einer ERP-Lösung
- Anpassungen an Standardsoftware (Arten von Anpassungen, deren Abgrenzung und Konsequenzen, ...)
- integrierte Entwicklungsumgebungen und Programmiersprachen
- Eigenentwicklungen (funktionale Erweiterung eines ERP-Systems in praktischen Übungen (Miniprojekt))
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Skript zur Vorlesung</td>
</tr>
<tr>
<td>– Ergänzende Literaturempfehlungen (nicht zwingend erforderlich):</td>
</tr>
<tr>
<td>diverse, systemspezifische (SAP® R/3®, bzw. MBS Navision®) Fachbücher</td>
</tr>
</tbody>
</table>

| **Hochschullehrer/in:** |
| Hesseler |
Modul/LV-Nr. Modul/Lehrveranstaltung

834 Künstliche Intelligenz

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Einführung in die Informatik
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Praktikum 2 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Vermittlung der grundlegenden Kenntnisse:
a.) von Begriffen und Methoden der Künstlichen Intelligenz und
b.) von Anwendungen wissensbasierter Methoden in "Intelligenten Systemen".

Entwicklung der Fähigkeit:
a.) die Einsatzmöglichkeiten dieser Methoden ein- und abschätzen zu können,
b.) komplexe Problemstellungen zu analysieren, zu strukturieren und geeignete
Methoden wissensbasierter Systeme zu ihrer Lösung oder zur Lösung von
Teilaufgaben einzusetzen.

Lehrinhalt:
Die Vorlesung "Künstliche Intelligenz" gibt, im wesentlichen in Anlehnung an das
Buch von Heinsohn und Socher-Ambrosius, eine Einführung in die wichtigsten
Begriffe und Methoden der Wissensverarbeitung.
- Einführung (Wissen und Information, Expertensysteme, integrierte
 Wissensverarbeitung in Intelligenten Systemen)
 - Suchverfahren
 - Constraint-Propagierung
 - Regelsysteme
 - Unvollständiges und unsicheres Wissen
 - Vages Wissen (Fuzzy-Methoden)
 - Architektur Autonome Roboter
 - Anwendungen in Intelligenten Systemen
Literatur:
- Weitere Angaben im Laufe der Veranstaltung.

Hochschullehrer/in:
Schäfer-Richter
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>838</td>
<td>Maschinenorientierte Programmierung</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Praktikum 2 SWS;
Anwesenheit: 60 h, **Eigenarbeit:** 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Die Studierenden kennen wesentliche Prinzipien und Techniken der Assemblerprogrammierung eines 64-Bit-RISC-Prozessors. Sie können an der Schnittstelle der Befehlssatzarchitektur direkt programmieren.

Lehrinhalt:
MMIX, MMIXAL

Literatur:
Integrierte Dokumentation von D. E. Knuth
Anlauf, Böttcher, Ruckert: Das MMIX-Buch. Springer-Verlag, Berlin, Heidelberg

Hochschullehrer/in:
Hennekemper
840 Numerische Algorithmen

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Mathematik 1 und Mathematik 2
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
seminaristische Vorlesung 4 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:

Lehrinhalt:
Literatur:

Hochschullehrer/in:
Lenze
841 Operations Research

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS;
Vorlesung 2 SWS, Übung 2 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
die grundlegenden Konzepte der linearen Programmierung,

Anwenden:
Optimierungsprobleme unter Beachtung der wesentlichen Aspekte in
mathematische Modelle überführen, die mit Hilfe von OR-Methoden gelöst werden
können.

Lehrinhalt:
Mathematische Grundlagen der linearen Optimierung, Simplexalgorithmus,
Sensitivitätsanalyse,
dualer Simplexalgorithmus, M-Methode, Zweiphasenmethode, Dreiphasenmethode,
Dualitätstheorie, Spezielle Optimierungsprobleme

Literatur:
- Neumann, K., Morlock, M. Operations Research. Hanser, München
- Rietmann, P. Operations Research (Vorlesungsskript)
- Rietmann, P. Aufgaben und Lösungen
- Rietmann, P. Formelsammlung: Operations Research

Hochschullehrer/in:
Rietmann
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>845</td>
<td>Rechnerarchitekturen</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 2 SWS; Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
- Verständnis der Konzepte moderner Rechnerarchitekturen als Basis für die Technische Informatik
- Kenntnisse über Architektur und Aufbau aktueller Prozessoren.
Anwenden:
- Architekturkonzepte und Leistungsparameter vergleichen und bewerten
- Für virtuelle und reale Prozessoren Maschinenprogramme analysieren und schreiben

Lehrinhalt:
- Rechnerklassifikation und -evolution
- Rechenwerke und Leitwerke
- Rechner-Leistungsbewertung
- Rechnerentwurf
- Befehlssatzarchitekturen (ISA)
- Virtuelle Prozessoren
- Mikroarchitekturen
- Cache und Hauptspeicher
- Bussysteme
- Virtuelle Speicher
- Superskalare Architekturen
- EPIC
- 64-Bit Architekturen
- Vektorrechner
- Parallelrechner
- Signalprozessoren
Literatur:
- Christian Märtin: Rechnerarchitekturen, Fachbuchverlag Leipzig
- Paul Herrmann: Rechnerarchitektur, Vieweg
- Andrew S. Tanenbaum: Structured Computer Organisation, Prentice Hall

Hochschullehrer/in:
Swik
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>846</td>
<td>Simulationstechnik</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Verfahren zur mathematischen Modellbildung und zur Simulation von zeitkontinuierlichen, zeitdiskreten und ereignisdiskreten Systemen

Anwenden:
Erstellen von mathematischen Modellen und Simulation dynamischer Systeme

Lehrinhalt:

Literatur:
- Scherf, Helmut E.: Modellbildung und Simulation dynamischer Systeme, Oldenbourg, 2003

Hochschullehrer/in:
Patzelt, Röhrig
Modul/LV-Nr.	Modul/Lehrveranstaltung
849 | Systemprogrammierung

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Praktikum 2 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
- Betriebssystemkonzepte und ihre Programmierung bezogen auf Betriebssysteme des Windows-Typs und des UNIX-Typs, speziell Linux.
- Grundlagen moderner Programmorganisation: Konzept Java Virtual Maschine, .NET-Plattform, CLR
Anwenden:
- Programmieren mit ausgewählten systemnahen API's
- Ausgewählte Programmiermethoden von Betriebssystemkomponenten

Lehrinhalt:
- Monolithischer Kernel: der Linux-Kernel und seine Treiber-Realisierung
- Die "Unix-Konzepte": gemeinsam allen Unix-artigen Betriebssystemen
- Umsetzung einiger der allgemeinen Unix-Konzepte im Kernel des Unix_Clones Linux
- Realisierung von Treibern im Linux-Kernel
- Programmorganisation: Interpreter, Portabilität
- System-API's zu ausgewählten Themen, u. a. Netzplattformen

Literatur:
Wird in der Veranstaltung bekannt gegeben.

Hochschullehrer/in:
Lehrbeauftragter (Büchter)
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>855</td>
<td>Robotik</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS; Anwesenheit 60h, Eigenarbeit 90h
Prüfungsvorleistungen: Regelmäßige Bearbeitung von Aufgaben
Prüfungsleistung: Klausur

Lernziel:
Kennen:
Methoden und Anwendungen der Robotik

Anwenden:
- Realisierung von Anwendungen der Robotik
- Entwurf von Robotersystemen
- Auswahl von Komponenten
- Konfiguration und Programmierung von Robotern

Lehrinhalt:
- Ziele und Einsatzgebiete der Robotik
- Aufbau von stationären und mobilen Robotern
- Teilsysteme von Robotern (Gelenke, Antriebe, Aktorik und Sensorik)
- Kinematiken von stationären und von radgetriebenen mobilen Robotern
- Kinematiken von Laufmaschinen
- Programmierung von Robotern
- Bahnplanung
- Selbstlokalisierung und Navigation mobiler Roboter

Literatur:
- Nehmzow, Ulrich: Mobile Robotik, Springer Verlag, 2002

Hochschullehrer/in:
Röhrig
<table>
<thead>
<tr>
<th>Modul/LV-Nr.</th>
<th>Modul/Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>856</td>
<td>XML</td>
</tr>
</tbody>
</table>

Modulart: Lehrveranstaltung
Angebotshäufigkeit: jährlich
Voraussetzungen: mind. 60 LP für Zulassung, Einführung in die Informatik 1
Leistungspunkte: 5
Art und Umfang: gesamt 4 SWS; Vorlesung 2 SWS, Praktikum 2 SWS;
Anwesenheit: 60 h, Eigenarbeit: 90 h
Prüfungsvorleistungen: Seminarbeitrag
Prüfungsleistung: Klausur

Lernziel:
Dieses Modul leitet dazu an, eigene Anwendungen in XML zu entwickeln. Nach der Bearbeitung dieses Moduls sollten Studierende wissen, was XML ist. Sie lernen XML als Daten, als darstellbare Dokumente oder Gestaltungsmittel für Dokumente kennen.

Kennen:
Sie kennen Kriterien für die Auswahl von Elementen eines Dokuments, die dann nach einer Vorlage formatiert werden können. Studierende sollten das nötige Wissen haben, um ein XML-Dokument in ein für die Präsentation geeignetes Format zu transformieren.

Anwenden:
Sie können mit XML Daten strukturieren, beschreiben und aus Programmen heraus manipulieren. Und sie sollten Dokumente verknüpfen, auf andere Dokumente verweisen und innerhalb eines Dokuments nach einem bestimmten Element suchen können. Studierende wissen nach Durcharbeiten des Buchs, wie man mit XML an die traditionelle Datenspeicherung herangeht und wie sie mit einem anderen Server kommunizieren, wenn die benötigten Daten lokal nicht vorhanden sind.
Lehrinhalt:
- Einführung: Historie, W3C, Standards,
- Daten und darstellbare Dokumente: Wohlgeformtes XML, DTD, Namespace
- XML als Daten: Grundlagen der Datenmodellierung, XML-Schema
- Dokumente präsentieren und transformieren: transformieren (XPath, XSLT), Darstellung am Bildschirm oder gedruckt (CSS, XSL-FO), Multimedia (SML, SVG, VoiceML), Darstellung für menschliche Leser (XHTML, WML, DocBook)
- auswählen (XPath), suchen (XQuery), verknüpfen und verweisen (XPointer, XLink, XBase, XInclude), Ablegen (XML+Datenbanken, RDF)
- austauschen (SOAP, WSDL, WAP, UDDI,(678,325),(995,330), XSignature, XEncryption)
- aus Programmen heraus manipulieren (SAX, DOM, XML+Java)
- Anwendungen: Einsatz im Handel (ebXML, RosettaNet, BizTalk)

Literatur:

http://www.w3.org
http://www.xml.com
http://www.xml.org
http://ibiblio.org/xml

Hochschullehrer/in:
Meyer